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ULTRAMARATHONS HAVE BECOME increasingly popular in recent
years. Although complex tactical and psychological-motiva-
tional factors play important roles in performance (Fig. 1),
running velocity sustained over a prolonged time is directly
proportional to maximal sustainable Vo, and inversely propor-
tional to energy cost of locomotion (Cr) (4). In fact, we have
demonstrated that, despite the very low intensity in ultramara-
thons (e.g., fraction of VO3 nax sustained, F = 0.4 to 0.5 over
a 24-h race), performance still relies on Vo, max and F (19).
Nevertheless, factors that determine F for ultramarathons are
quite different than for shorter distances. Lactate threshold (or
critical velocity), thermoregulatory control, and ability to oxi-
dize lipids are of smaller significance in ultramarathons due to
the low intensity. In contrast, avoidance of muscle damage and
gastrointestinal symptoms and mental abilities (e.g., internal
motivation, associative/dissociative cognitive strategies, etc.)
are among the main factors implicated in F for ultramarathons.

It has been argued that an exceptionally low Cr in marathon
distances partly explains the supremacy of East African run-
ners in the marathon, perhaps by delaying glycogen depletion
and reducing thermal stress (13). But we believe that the lower
exercise intensity in ultramarathons makes these parameters
less important, whereas musculotendinous and osteoarticular
damage is crucial for F. Herewith, we propose that certain
measures that actually increase Cr may be more than offset
through gains in F in ultramarathon running, and such a
balance is essential for performance optimization. Although
conceptually new relative to running, this idea was previously
recognized with regard to preferred pedaling rate (24) and
cross-country skiing technique (10).

Factors Accounting for Cr

Cr mainly depends on the mechanical work produced both
externally, with its interplay with elastic energy (28), and
internally, related to stride frequency and anthropometric fac-
tors. For instance, the exceptional Cr of East African runners
has been attributed in part to their slender legs, resulting in
lower internal work (17). Other anthropometric factors linked
with a low Cr are short calcaneal tubers (26), long Achilles
tendons (12), low body fat, high percentage of type I fibers, and
long lower limbs relative to body mass (30). A high Cr has
been reported in flexible runners (e.g., 2), most likely because
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Fig. 1. Determinants of performance in ultramarathons that may be subjected
to a compromise between energy cost and lower limb tissue injury (dashed
lines). GI, gastrointestinal; NM, neuromuscular. Most important factors for
ultramarathon performance are in bold.

stiffer musculotendinous structures facilitate elastic energy
storage and recovery.

Effects of Ultramarathon Running on Lower Limb Tissue

Not all peripheral consequences of ultramarathons are due to
mechanical stress, as oxidative stress is likely also involved
(27). However, there is little doubt that ultra-runners must
develop strategies to limit tissue damage from repeated impact
during running through adaptations from training and adjust-
ments during competition. This is evident from the large
increases in myoglobin, creatine kinase, C-reactive protein,
and cytokines after ultramarathons (11, 15, 21). Similarly, a
major effect of ultramarathon running on cartilage structures
has been suggested based on examination of blood markers
(14, 15). We measured significant peripheral fatigue, i.e.,
reductions in knee extensor and plantar flexor (PF) forces
evoked by electrical stimulation, after ultramarathons (18, 21).
Also detected were low-frequency fatigue (21), a noninvasive
measurement of excitation-contraction failure, and severe cen-
tral fatigue, which was at least partly attributed to peripheral
alterations on the mediation of groups IIl and IV fatigue-
sensitive muscle afferents with inflammation.

Saving the Legs vs. Saving Energy

Although many factors that positively affect Cr also benefit
F and vice versa, this is not universally true, especially when
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considering long running distances. Here we note several
factors that may adversely affect Cr but benefit F for ultrama-
rathon running distances. In particular, these factors may en-
hance F through control of muscle damage, muscular fatigue,
and symptoms associated with prolonged running at the ex-
pense of Cr.

Flexibility. Greater flexibility is usually linked to a higher Cr
during short bouts of running so it is tempting to presume that
ultramarathon runners should limit regular stretching. How-
ever, it was recently shown that flexibility training before an
intense eccentric exercise attenuates exercise-induced muscle
damage (1). Compliant legs may also limit low-back pain (7)
and the work of bouncing viscera (3), which may potentially
reduce gastrointestinal symptoms.

Leg mass. Body mass index has been shown to vary con-
siderably among the top finishers of a 161-km trail run (9),
unlike shorter distances where uniform anthropological char-
acteristics (i.e., low body and muscle mass) are observed
among elite runners up to marathon distance (13). One should
consider the possibility that athletes specializing in ultra-
distance running may have been less successful in the shorter
distances where larger leg muscle mass may be a hindrance.
Although drastically increasing internal work when running at
20 km/h as for elite marathon runners, large thighs and calves
are nevertheless less detrimental at low speed (8§—12 km/h for
the best runners in competitions lasting 15-24 h) compared
with high speed and may even have advantages in terms of
resistance to muscle damage.

Stride frequency. The freely chosen stride frequency tends to
be close to that which is most economical, so any manipulation
of stride frequency increases Cr. However, Edwards et al. (5)
recently suggested that a 10% increase in stride frequency at a
given speed decreases the probability of stress fractures by
3—6%, presumably from reductions in peak loading forces (8).
This also likely reduces damage to the musculoarticular system
during an ultramarathon. In support of this, we observed a
spontaneously increased stride frequency at the end (22) or
within 3 h (23) after completion of an ultramarathon, whereas
studies on shorter distances have shown a decrease in stride
frequency (up to 1-h exhaustive run), no changes (marathon),
or only minor increases (marathon) (22). We recently found
that a runner increased his stride frequency through decreasing
aerial time after running 8,500 km in 161 days (20). Because
this adjustment allowed him to reduce loading rate and peak
force, we speculated it was a way to limit mechanical conse-
quences from this extreme running distance despite the detri-
mental effect of increasing Cr by 6%.

Shoes. Cr is reduced when running barefoot compared with
shod running (e.g., 29), mostly due to shoe mass. Some have
suggested that the typical modern running shoe with cushioned
and elevated heel has changed the human gait pattern from a
forefoot or midfoot landing pattern to a heel-strike pattern.
Forefoot/midfoot strikes also induce a lower loading rate, due
to the removal of the impact force peak (16). However,
cushioned shoes should not be discarded by ultramarathon
runners in favor of minimalist shoes that are usually worn by
elite marathon runners for three reasons. First, a higher pre-
activation of the PF muscles is necessary for a midfoot landing
pattern. Because high levels of fatigue (strength loss ~30—
40%) have been reported in the PF muscles after ultramara-
thons (18, 21), i.e., higher levels than after marathon running

(strength loss ~15-20%), it is likely that minimalist shoes in
very long distance running would enhance PF fatigue and this
may in turn increase impact forces. Second, it is not known
whether a midfoot strike pattern results in smaller impact
forces on negative slopes that are often encountered in moun-
tain ultramarathons races contrary to marathon courses, which
are mostly flat. Finally, velocity and stride frequency are lower
in ultramarathons, so heavier shoes affect Cr less in ultrama-
rathons than in shorter distances.

Poles. Poles are commonly used in mountain ultramarathons
and alleviate lower limb muscular work and activation during
uphill and downhill travel (e.g., 6) but at the expense of Cr. The
effects of poles on Cr may depend on several factors such as
slope and pole mass (6, 25) but speed and stride rate may also
be involved. As is the case for shoe mass, adding mass at the
upper limbs is less detrimental at low stride rates, i.e., in
ultramarathons.

Conclusion

Strategies to minimize Cr are compulsory in running events
up to the marathon distance, whereas minimizing damage to
lower limb tissue, muscular fatigue, and symptoms associated
with prolonged running through measures that can increase Cr
becomes crucial in ultramarathons. As shown in Fig. 1, the
appropriate balance between a lower Cr and higher F to
optimize performance in ultramarathons may favor a higher F
at the expense of Cr, particularly when considering such
parameters as leg stiffness and mass, stride frequency, and the
use of cushioned shoes and poles.
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