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quenced products using the Taq DyeDeoxy Termi-
nator Cycle Sequencing kit (Applied Biosystems) and
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Muscular Force in Running Turkeys:
The Economy of Minimizing Work

Thomas J. Roberts,* Richard L. Marsh, Peter G. Weyand,
C. Richard Taylor†

During running, muscles and tendons must absorb and release mechanical work to
maintain the cyclic movements of the body and limbs, while also providing enough force
to support the weight of the body. Direct measurements of force and fiber length in the
lateral gastrocnemius muscle of running turkeys revealed that the stretch and recoil of
tendon and muscle springs supply mechanical work while active muscle fibers produce
high forces. During level running, the activemuscle shortens little and performs little work
but provides the force necessary to support body weight economically. Running econ-
omy is improved by muscles that act as active struts rather than working machines.

Running is a bouncing gait in which me-
chanical energy is absorbed to slow and lower
the body in the first half of a step and released
to lift and accelerate the body in the second
half of a step. Although some of this work can
be provided passively by elastic energy storage
in tendons (1, 2), active muscles must provide
the force necessary to support the body and
maintain tension on tendon springs. Differ-
ences in the energy cost of running across
animal size and speed are proportional to the

cost of producing this force (3) but not to the
rate at which mechanical work is performed
(2). In vitro, muscles that contract isometri-
cally (without shortening) perform no work
but use metabolic energy and produce high
forces. In contrast, a shortening contraction
that maximizes mechanical work rate (power)
produces only one-third the force of an iso-
metric contraction, due to the characteristic
force-velocity relation of skeletal muscle (4).
This trade-off between work rate and force
output suggests that animals could minimize
the cost of producing force during running by
operating active muscle fibers isometrically
while the stretch and recoil of tendon springs
provide the work of the bouncing body.

We used surgically implanted sonomi-
crometer crystals to measure fiber length and
strain gauges to measure muscle force in the
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lateral gastrocnemius muscle of running tur-
keys (Fig. 1) (5). These methods avoid the
uncertainties associated with the determina-
tion of muscle length from film measurements
(6) and can discriminate between length
changes in muscle fibers as opposed to those
of passive tendons. Sonomicrometry has been
used successfully to measure skeletal muscle
length changes in situ and during walking in
cats (7, 8), and force buckles have provided
measurements of forces in individual muscles
(9). Direct measurements of muscle work re-
quire simultaneous determinations of both
muscle force and fiber length.

During level running, large changes in
muscle length occurred only during the swing
phase when the foot was off the ground (Fig.
2). The force produced during the swing phase

acts to decelerate the foot (tarsometatarsus
and phalanges) during ankle flexion and then
accelerate the foot toward the ground as the
ankle extends. Surprisingly, much of this force
was produced passively by the springlike be-
havior of the muscle as it is was stretched
beyond its resting length. We confirmed that
much of this force was produced passively by
observing that stretching the muscle to the
same lengths in an anesthetized bird (with no
muscle activity) produced forces similar to
those observed during the swing phase of run-
ning. Some active muscle force production
also occurred during the swing phase. Howev-
er, the amount of muscle activity during the
swing phase was small; much of the force
during each stride was developed before any
electromyogram (EMG) activity (Fig. 2), and

the total integrated EMG activity was less
than 5% of activity during stance for all
speeds of level running. The springlike behav-
ior of the elements that hold sarcomeres and
muscle fibers together has been described in
vitro (10), but a functional role for passive
muscle elasticity in locomotion has not been
demonstrated.

Most of the muscle activity and force
production occurred during stance, when
force must be produced to support the ani-
mal’s weight and work must be done to lift
and reaccelerate the body. During level run-
ning, the muscle provided high forces (up to
35% of peak isometric force at the fastest
speed) with small length changes during the
stance phase (Fig. 2A). At the fastest run-
ning speed, the muscle shortened by 6.6 6
1.9% of its resting length. Much of this
shortening occurred early or late in the
force-producing period, and the work out-
put of the muscle during shortening was less
than 3 J kg–1 at the fastest running speed
(11). Tendon energy storage and recovery
provided more than 60% of the work of the
muscle-tendon unit (Fig. 3). Most of this
energy storage must have occurred in ten-
don aponeurosis, as the majority of the free
tendon is calcified and too stiff to store
significant energy (12).

Passive elastic mechanisms can only return
energy stored previously in a step, therefore
the incremental increase in the potential en-
ergy of the body that occurs with each step of
incline running must be done by active mus-
cle work. When turkeys ran on inclined tread-
mills, the work performed by active muscle
increased in proportion to the incline (Fig. 4).
The force required to support body weight is
independent of incline. At a given speed,
peak muscle forces were the same for all in-

Fig. 1. Location of force
and length transducers
implanted in the lateral
gastrocnemius muscle
of wild turkeys. The later-
al gastrocnemius is an
extensor of the intertar-
sal (ankle) joint with a
small flexor moment at
the knee. A region of this
tendon is calcified in
adult turkeys, allowing
the placement of small
strain gauges (lower in-
set) that can be calibrat-
ed to measure the force produced by the attached muscle. Muscle fiber length was measured with
sonomicrometer crystals (black hemispheres, upper inset; wires are omitted for clarity) attached to
stainless-steel holders and sutured with fine silk along muscle fibers. Bipolar EMG electrodes (not
shown) were implanted near the sonomicrometer crystals.

Fig. 2. Fiber length, mus-
cle force, and activity for
the lateral gastrocnemius
of a turkey running at 3 m
s21 on level ground (A)
and up a 12° incline (B).
The vertical dashed line in-
dicates when the foot
makes contact with the
ground. One stride is
shown for each incline.
During level running, most
of the force and activity oc-
cur during stance when
the muscle shows little
length change. Some
force is produced passive-
ly during the swing phase.
During incline running, the
muscle shortens more
during stance while pro-
ducing similar force.

Fig. 3. The work performed during shortening of
the lateral gastrocnemius muscle-tendon unit (tri-
angles) and active muscle fibers alone (circles)
during stance as a function of speed. Elastic en-
ergy recovery from the tendon, the difference be-
tween the two lines, accounted for more than
60% of the work during shortening. Work was
calculated as the sum of all work performed when
the muscle shortened (lengthening work was ig-
nored). Tendon energy recovery was calculated
from muscle force and tendon stiffness. Ten
strides were analyzed for each animal. Values are
the mean and SE for five animals.
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clines, and impulse (the area under the force-
time relation) increased by less than 30%
from 0° to 12° (Figs. 2 and 4). Thus, almost all
of the increase in muscle work occurred as a
result of increased muscle shortening. The
large increase in muscle shortening and work
output occurred without a significant change
in stance time, indicating that the average
rate of shortening increased with incline (13).

What is the energetic benefit of oper-
ating muscles to produce force while min-
imizing work during level running? The
increase in muscular work with incline
running was paralleled by an increase in
the electrical activity in the muscle (Fig.
4) (14). If it is assumed that the integrated
EMG is proportional to the number of
active muscle fibers, running on a 12°
incline required three times the volume of

muscle to produce the same force as that
produced during level running (15). These
results are consistent with the hypothesis
that near-isometric force production dur-
ing level running increases the force out-
put of active muscle fibers because the
muscle contracts over a high force region
of its force-velocity curve. Thus, operating
muscles at low work outputs during level
running increases the force per cross-sec-
tional area of active muscle and allows the
runner to support body weight with a
smaller active muscle volume.

These results suggest that the skeletal
muscle may provide a fundamentally differ-
ent mechanical function during running
than during activities such as swimming,
flying, or jumping. These activities require
muscle contractions that produce mechan-
ical work at high rates to overcome drag,
produce lift, or accelerate the body (16).
Because running requires negligible work
against drag (17), and the average mechan-
ical energy of the body is constant over time
(at a steady speed on level ground), the
demands of support may be met most eco-
nomically by muscles that produce force
while minimizing mechanical work.
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Fig. 4. Net muscle work (A), shortening distance
(B), force (C), and activity (D) during stance phase
of running at three inclines. Significantly more
muscle had to be activated, as indicated by the
integrated EMG signal, to provide the same level
of force as the muscle shortened more during
incline running. The running speed was 2.5 m s–1

for all inclines. Fractional shortening (L/L0) was
determined as the initial length minus the final
length during stance force production L, divided
by the length at initial foot contact (separate ex-
periments indicate that the length at foot contact
is a close approximation of the length at which
isometric force reaches a maximum, Lo). All pa-
rameters changed significantly with incline (two-
factor analysis of variance with factors of individual
and slope, P , 0.03) except muscle force. Values
shown are the mean 6 SE for the number of
animals indicated beside each point or for five
animals if no number is indicated.
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